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Deep and shallow models in medical expert systems

LT Keravnou and I, Washbrook

Abstract. In the context of medical expert systems a deep system is often
used synonymously with a system that models some kind of causal process
or function. We argue that although causality might be necessary for a deep
systent it 5§ not sufficient on its own. A deep system must manifest the expec-
Lations of its user regarding its flexibility as a problem solver and its human-
computer interaction (dialogue structure and explanation structure). These
manifestations are essential for the acceplability of medical expert systems
by their users. We illusirate our argument by evalualing a representative
sample of medical expert sysiems. The systems are evaluated from the per-
spective of how explicitly they incorporate their particular models of exper-
1tse and how understandably they progress towards solutions. The dialogue
and explanation struciures of these systems are also evaluated. The results of
our analysis show that there is no strong correlation between causality and
acceptability. On the basts of this we propose that a deep system is one that
property explicates its underlying model of human experiise.

Key words: medical expert systems, deep model, explicitness of knowledge,
human-computer inleraction, dialogue structure, explanation structure,
ABEL., CASNET, INTERNIST-1, MDX, MYCIN, NEOMYCIN.

1. Introduction

Medical expert systemns have significantly contributed to the
advancement of the technology of expert systems (Clancey
and Shortliffe 1984). The diagnostic systems MYCIN, PIP,
and INTERNIST-I are among the earliest developed expert
systems. However, despite the fact that several of these medi-
cal systerns have achieved high levels of performance, hardly
any has progressed from the research laboratory into practi-
caj use,

Computer technology has been widely applied in medi-
cine, in recent years for providing automated decision aids for
clinicians (Young 1982). Medical expert systemns are only a
subset of the Al applications in medicine (Shortliffe et al.
1979), By and large, medical expert systems are disgnostic
systems which, more often than not, do not make treatment
recommendations. Some of the more recent medical expert
systerns, though, have the wider (and possibly harder to at-
tain) objective of aiding in the complete management of

patients. Diagnostic systems aim to pinpoint the cause of the
abnormal findings in the patient. Patient management sys-
tems aim to recover the patient from an unhealthy state of af-
fairs; this could involve making time-critical decisions (based
on the status of the patient, all the possible causes of hig prob-
lem and their respective implications), as well as the monitor-
ing of the patient over a period of time. Isolating the cause of
the abnonmal findings is not the objective of a patient man-
agement system; its objective is the revocation or the preven-
tion of undesirable effects of the likely causes. Treaunent ad-
visory systems lie between diagnosticians and patient
managers. The objective of a treaiment advisor is 1o narrow
down on the cause of the problem as closely as a course of
treatment would entail and to recommend the optimal treat-
ment plan for the given patient. Treatment advisors may not
necessarily follow up the progress of the patient like a fully
fledged patient management systern.

The majority of medical expert systems are consuitative
systems that need to engage in active inferactions with
humans. The weaknesses of the human-computer interaction
in current medical expert systems is a prime factor in the
medical community’s scepticism towards such svstems. It is
fair to say that medical expert systems have not yet been ac-
cepted by their potential users.

There is a general agreement as to what is a shallow model
of expertise, namely one that models expertise as a collection
of if-then associations (rules), Most first generation expert
systems are shallow. Arecent advance in expert systems is the
so-calied deep expert system. Various definitions have been
put forward for what is a deep model of expertise (Price and
Lee 1988). The notions of causality, temporal reasoning,
qualitative reasoning, reasoning from first principles, or rea-
soning from structure and function all figure in these defini-
tions. The advocates of deep models claim that richer ex-
planations, more adequate dialogue structures, and higher
flexibility in problem solving yielding higher levels of per-
formance accrue from this approach. Klein and Finin (1987)
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have proposed the following comparative defmition of deep-
ness: a model M is deeper than a model M’ if M represents
knowiedge or is able to infer knowledge that is implicitin M'.

In this paper we develop a definition based on Klein and
Finin and use it to rank some existing medical expert systems
on a ‘deepness’ scale; we evaluate the human-computer
aspects of these systerns and compare our deepness ranking
with the quality of interactions.

1.1 Analytical framework

Human-computer interaction encompasses a wide range of
issues from the very technical to the highly abstract. From the
perspective of this paper the relevant aspects of human-
computer interaction are the dialogue structure and the ex-
planation structure.

Dialogue structure covers the ordering of the questions
raised by the system, the relevancy and comprehensibility of
these questions, and the nature of the interaction in general
(mixed-initiative for example). The number of questions
raised is not in itself a sufficient metric for the quality of in-
teyaction. (Needless to say that asking too many questions,
especially in time-critical situations, is unacceptable.) Human
experts are able to home onto the problem with the minimum
of information. The ability of experts to distinguish relevant
from irrelevant information in & particular problem is an at-
tribute of their expertise (Elstein et al. 1978).

Explanation structure covers the way each explanation is
presented, the level and depth of explanation, and the model
of the user upon which the explanation is based. Because the
uitimate responsibilty for the treatment given to a patient rests
with the medical practitioner, she/he should be able to under-
stand the reasoning behind that treaiment. Hence explana-
tions are particularly vital in the context of medical expert
systemns. Yet the majority of medical expert systems do not
provide an explanation facility (and some that do have been
severely criticized), This must be a major reason for the lack
of acceptance of these systems.

Figure 1 gives the top-level framework for an expert sys-
tem. For medical expert systems, the case picture holds the
data specific to the particular patient and the progressions
towards the solution (i.e., generated hypotheses, conclusions,
decisions, actions). In the context of diagnostic systems the
case picture may be referred to as the diagnostic picture. The
domain factual knowledge is general knowledge that should
cover for any specific case in that domain. The reasoning
knowledge is also by and large domain specific; it manipu-
lates the domain factual knowledge and the case specific in-
formation o progress the solutions. The structuring and inter-
actions of these three components, domain factual knowl-
edge, reasoning knowledge and case picture, constitute the
model of expertise incorporated in the given system. The na-
ture of the human-computer interaction depends on this
model {(Keravnou and Johnson 1986).

In Section 2 we analyse the selected medical systems from
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Figure 1. Expert system framework. A deep system must manifest the
user expectations regarding & meaningful dialogue and appropriate
explanations.

two perspectives: (1) the ‘explicitness’ of the incorporated
model and (2) the nature of the human-computer interaction.
In the background of Figure 1, a model is explicit if: (a) the
domain reasoning knowledge is understandable and such
knowledge is not implicit in control constructs; (b) the
domain factual knowledge is sufficiently differentiated into
its types and such knowledge is not impiicit in control con-
structs; and {(c) the progress towards the solution is explain-
able at any intermediate point as well as at the end of the con-
sultation.

The analysis of the human-computer interaction is con-
cerned with the two aspects: (1) dialogue structure and (ii) ex-
planation structure. Some of the selected systems do not
provide an explanation facility per se but rather a trace of their
operations. In these systems the trace is taken to be the
explanation structure.

2. Case analyses

We have selected six medical expert systems to discuss in the
sequel: the diagnostic systems MDX, INTERNIST-I and
NEOMYCIN; the treatment advisors CASNET and MYCIN,
and the patient manager ABEL. To the best of our knowledge
only the diagnostic component of ABEL has been demon-
strated in a working system and thus, in this paper, we treat
ABEL as a diagnostic system as well. The selected systems
constitute a representative sample of medical expert systems.

21 MYCIN

2.1.1 Model of expertise

MYCIN (Shortliffe 1976) diagnoses certain antimicrobial
infections and recommends drug treatment. The MYCIN
framework is depicted in Figure 2.

Explicitness of domain factual knowledge

MYCIN’s factual knowledge is by and large represented in
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Figure 2. MYCIN framework

terms of if-then associations or rules. Below we give a diag-
nostic rule and a treatment ruie:

If 1) the infection is meningitis
2} the subtype of meningitis is bacterial
3) only circumstantial evidence is available
4) the patient is at least [7 years old and
5} the patient is an alcoholic

then there is suggestive evidence that diplococcus pneu-
moniae is an organism causing the meningitis

If  the identity of the organism is pseudomonas

then Irecommend therapy chosen from among the following
drugs:
1. Colistin {0.98)
2, Polymyxin (0.96)
3. Gentamicin (0.96)
4, Carbenicillin (0.96)
5. Sulfisoxazole (0.64)

The diagnostic rules are highly stylized and interact impli-
citly through the sharing of antecedent or consequent clauses,
Each reatment rule essentially associates an organism with
the set of drugs which have been shown to be effective against
the organism.

When a diagnostic rule is evaluated, its antecedent condi-
tions must be evaluated in the given order. Referring 1o the
example rule, establishing that meningitis is preseént in the
patient must precede the establishing that its type is bacteriai,
something immediately obvious 1o {trained) humans.
However, MYCIN’s model does not allow for the explicit
representation of etiological taxonomies. Locking further
into the antecedent of this rule we see that the age of the

patient must be established prior to asking whether the patient
is alcoholic. World facts relevant to MY CIN’s domain such
as ‘itis generally assumed that children are not alcoholics’ are
not explicit in the MYCIN model.

Once the diagnostic rule antecedent is stripped of its con-
textual (1-3) and screening (4} clauses, what is left is that al-
cohelism suggests that diplococcus penumoniae is an or-
ganism causing the meningitis. However, the logical basis
(justification) for this association is not present in the model.
Without this information it is not possible to see in which situ-
ations this association is violated (Dhar and Pople 1987). A
MY CIN diagnostic rule is nothing more than an evolved pat-
tern of reasoning that copes with the demands of ordinary
problems leaving out ‘unnecessary’ steps.

In addition to the diagnostic rules, the model incorporates
factual knowledge about clinical parameters such as the mor-
phology and aerobicity of organisms in terms of property ta-
bles. Included properties specify the type and permitted
values for the parameter. The two properties updated-by and
look-ahead are not conceptual properties, but rather mechani-
cal ones which simply provide indexes into the rule base,
Another property, condition, specifies conditions which need
1o be established prior to asking the user questions about the
value(s) of the parameter. Implicit in these guestions are
world facts such as ‘sex male implies pregnancy absent’, and
common-sense principles such as ‘if a class of things is ab-
sent then so is any subtype of it”.

Explicitness of reasoning knowledge

Perhaps the only domain reasoning knowledge given expli-
citly in the MY CIN model is that first you identify the offend-
ing organisms and then you prescribe the best treatment. This
is given by MYCIN’s goal rule which links the two aspects
of MYCIN, namely diagnosis and treatment. For its diagnos-
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tic aspect MYCIN employs a domain independent (and thus
very mechanistic) inference mechanism via two procedures,
monitor and findout. These procedures do not embody any
domain specific diagnostic strategies, and could be used in
any ruie-based system to chain backwards from some initial
goal. The concept of a hypothesis is alien to MYCIN (Clan-
cey 1986),

We said earlier that the rule antecedents must he evaluated
in the order given, Implicit in the first two clauses of our ex-
ample diagnostic rule is the reasoning stralegy that we first
establish a class of etiologies (meningitis} and then we
proceed to refine this to a particular instance of the class
(bacterial meningitis). The absence of an etiological tax-
onomy makes the explication of this strategy impossible., In
this rule, clause number 3 establishes that only circumstantiat
evidence is available. Implicit in this is the reasoning strategy
that evidence is either direct or circumstantial, and that differ-
ent association strengths should be used in the presence of
both direct and circumstantial evidence. In the presence of
direct evidence a companion rule to the above allows the cir-
cumstantial evidence of alcoholism to be considered but
gives it less weight, Thus in MYCIN the actual domain strate-
gies are implicit in the control constructs employed, e.g.,
ordering of antecedent clauses and ordering of rule invoca-
tions.

The domain reasoning for treatment selection is repre-
sented in terms of Lisp procedures. These procedures embody
heuristics such as ‘use the minimum number of drugs’ and ‘no
more than one drug from the same category should be used’.
The treatment knowledge in MYCIN is therefore implicit in
the given Lisp procedures,

Explicitness of case picture

In MYCIN the diagnostic pictuze consists of (conrext, para-
meter, value, CF) quadruples which are hierarchically organ-
ized through their contexts. The context tree registers all the
patieni-specific findings quite explicitly. This may seem para-
doxical compared to the implicitness of the domain, factual
and reasoning, knowledge in the MYCIN model. The under-
standability of the case picture is attributed to the systematic
search regime applied through the monitor and findout and
the absence of user volunteered information (see below).

2.1.2 Human-computer interaction
Dialogue structure

In MYCIN the user is not allowed to volunteer any informa-
tion. The dialogue is entirely machine-initiated. MYCIN’s
search space is relatively small and thus exhaustive searching
of it is possible, However, MYCIN's essentially blind search
leads to unnecessary questions which, coupled with the need
to re-enter all patient data anew for every consultation about
the same patient, leads to a rather unacceptable sifuation.
MYCIN tries to alleviate this by always asking more general

questions than the current situation requires, e.g., instead of
asking whether the morphology of organism-1 is rod,
MYCIN would ask what is the morphology of organism-1.
Simiiarly, subgoals are more general than the particular goal
requires, Through this technique, MYCIN is trying to achieve
a more organized and focussed approach to its diagnostic
task. Lastly, with the condition property of parameters and the
screening clauses in rules, MYCIN hopes to prevent irrelvant
or incomprehensible questions. In spite of such (low level)
control constructs, however, MYCIN’s dialogue structure is
not natural.

Explanation structure

The only explanations that MYCIN is capable of are in terms
of the rule activations that tock place in the particutar consul-
tation. Thus the quality of the explanations is dependent on
the quality of the rules. As we have seen above, the justifica-
tions of rules as well as their structure {clause ordering) are
not recorded. MY CIN’s explanation structure is therefore not
adequate.

2.2 CASNET

The Causal ASsociational NETwork (CASNET) embodies a
model for the long-term management of diseases whose
mechanism is well known {Weiss 1974). The CASNET
model is illustrated in Figure 3.

2.2.1 Model of expertise
Explicitness of domain factual knowledge

In CASNET a disease process is modelled in terms of a causal
network of dysfunctional states. The level of resolution used
in the causal model is application dependent and must be the
appropriate level from a diagnostic/prognostic perspective. It
may well be that some of the states in a particular application
cover a number of events.

Some of the dysfunctional states are srarting states and
some final states. Starting states are assigned prior frequen-
cies denoting their likelihoods of accurring. The represented
relationship between states is ‘causes’, the relationship is
multi-valued (or fuzzy) where the assigned value denotes the
strength of causation. The severity of the disease increases as
we move down a causal chain and the objective is to prevent
the progression of the disease to a final state (provided it has
not already progressed that far) by recommending the appro-
priate therapy regime. By modelling the causes relationship
instead of its inverse caused-by, CASNET reasons forwards
in time, thus enabling prognostic patient assessment,

Dysfunctional states are not observable entities but can be
hypothesised onthe basis of observations. Observations are as-
sociated with states; again this is a mulii-valued relationship
where the values specify the strength to which observations
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Figure 3. CASNET framework

provide positive or negative evidence for states, Observations
areconceptually different from states, and thus in the CASNET
modelthey occupy aplaneof their own. Dependenciesbetween
observations are represented within their plane and these de-
pendencies enabie the derivation of information from known
information and also provide question orderings.

Some of the dysfunctional states are designated as
frealable states. Disease categories correspond to final states
and thus include all the causal pathways (from starting states)
that lead 1o their particular final states. Intermediate treatable
states on these pathways define disease subcategories. This
knowledge is represented on yet another plane. This plane is
related to the plane of therapies. (The observations, states and
disease categories planes collectively represent the diagnos-
tic knowledge.)

Disease categories are related to therapy plans which cover
for all their subsumed subcategories. Therapy plans are also
associated with those observations that provide indications or
contraindications for treatments included in the plan,

The CASNET model indeed provides a fine differentiation
of domain concepts and their interretationships.

Explicitness of reasoning knowledype

The CASNET diagnostic process aims io identify the causal
pathways which are currently operative in the patient. This is

done by repeatedly collecting oberservations, hypothesising
dysfunctional states and then hypothesising the most likely
causal pathways. A state is dynamically assigned two
measures: a confidence factor (belief measure) derived from
the instantiated observations related to it and a weighr (likeli-
hood measure) derived from contextual evidence, Le., other
instantiated states that are causally related to it. Once no
further questioning is considered useful diagnostic subcate-
gories are 1dentified on the most likely causal pathways and
treatments are recommended. The disease categories plane
does not play an active role during the diagnostic process.

However, as the reasoning knowledge is entirely coded in
terms of Fortran subroutines, this knowledge is not suffi-
ciently explicated.

Expliciiness of case picture

The case picture consists of the portions of the planes which
have been instantiated for the particular case. What is inter-
esting here is the presence of two hypothesis spaces: (1) the
space of individual dysfunctional states constijuting simple
hypotheses, and (2) the space of causal pathways constituting
complex hypotheses, which may be an infinite space and
which is dynamically generated.

The causality relationship is central to the complex hy-
pothesis space. The components of complex hypotheses are
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constructed in parallel rather than sequentially (cf. INTER-
NIST-1). This provides for diagnostically complete and co-
herent hypotheses.

The diagnostic picture therefore holds all the partial solu-
tions suggested by the observations and thus shows how well
a partial solution explains the observations. This explicit rep-
resentation of diagnostic possibilities gives a complete and
meaningful progression towards the solution.

2.2.2 Human-computer inferaction
Dialogue structure

The dialogue permitted by the CASNET model is mixed-
initiative; the user can volunteer information and the system
can ask questions to elicit additional information.

The domains where the CASNET model has been applied
are rather narrow and in a sense comparable to MYCIN's
domain, However, unlike MYCIN which performs an ex-
haustive search of its space, CASNET abduces hypotheses
and then selects and applies an information acquisition

strategy which gives it a much more natural dialogue struc-
ture. Questions aim at confirming the presence of states
which are suggested either by observations or other estab-
lished/suggested states. The answers to questions are used, in
conjunction with a fixed formula, lo determine confidence
factors for their associated states. These confidence factors
are then translated in a fuzzy way into stams values (un-
known, denied, present). The causal strengths associated
with arcs between states are combined with the status valoes
to give each state a weight, denied states (for example) being
given low weights. These weights, derived from the causality
relationship, are used to direct information acquisition in a
dynamic, focussed way. The causality relationship also deter-
mines the most likely complex hypothesis.

Explanation structure

Although the domain factual knowledge is quite explicit, the
reasoning knowledge is embedded in Fortran routines. One
would, therefore, rightly predict that there would be limits to
the kinds of explanations that CASNET could be capable of.



For example, it may not be easy to get run lime explanations,
i.e., what the system is currently doing and why in terms
understandable to the system users.

In fact CASNET can only provide explanations regarding
its conclusion at the end of a consultation: (1) it can explain
why a given state was confirmed or denied by displaying the
evidence relevant to it, L.e., the relevant associational links
which were instantiated; (2) it can explain why a given causal
pathway was selected; and (3) it can explain how conflicts of
evidence were resolved.

Although the above explanations are very useful to have,
certainly they are not sufficient on their own. The inability to
dynamically provide guestion justifications is indeed a seri-
ous omission.

2.3MDX

MDX performs diagnoeses in the liver syndrome cholestasis
{Chandrasekaran and Mittal 1983). Critical to the overall per-
formance of MDX are its two auxiliary systems, PATREC
and RADEX (see Figure 4 a). PATREC manages the patient
data and performs ‘intelligent’ data retrieval and inference.
RADEZX is a radiological consultant which interprets various
kinds of imaging data. Each of these three systems is struc-
‘tured in the same way. This framework is illustrated in Figure
4 b through the MDX system. The designers’ objective was to
explicate the conceptual structure of the domain knowledge
(Chandrasekaran and Mittal 1982); this conceptual structure
reflects the uses of the knowledge in performing the particu-
lar global task effecrively.

2.3.1 Model of expertise
Explicitness of domair factual knowledge

The diagnostic knowledge is distributed among the nodes of
a diagnostic taxonomy (see Figure 4 b). Each node represents
some specialist, e.g., an internist. The MDX diagnostic tax-
onomy plays a very active role in relation to the passive na-
rure of CASNET’s disease taxonomy.

Bach diagnostic specialist has knowiedge about estab-
tishing the presence of a problem in its area of specialisation
(confirmation and exclusion criteria}, and in the case of a non-
primitive specialist, knowledge about refining that problem
(the latter knowledge can be activated if the relevant diagnos-
tic possibility has not been ruled out); this knowledge may in-
clude refinement suggestions for any subsequent level in the
diagnostic taxonomy and not just for the immediate suc-
cessors (multi-level refinement jumps in the context of top
level specialists are triggers). The knowledge comprising a
diagnostic specialist is either represented declaratively, e.g.,
in terms of rules, or in terms of procedures; in either case this
knowledge is activated through some interpreter.

Asmentioned above, PATREC exhibits the sameconceptual
organisation as MDX, The nodes of PATREC's taxonomy re-
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present specialists on medical concepts, e.g., a specialist on the
concept of drugs. PATREC has deep knowledge of medical
concepts, such as the units of measurements used and the rel-
evant laboratory tests for eliciting findings on these concepts,
In addition, PATREC has an understanding of rudimentary
temporal aspects. This is demonstrated through the following
exampte taken from Chandrasekaran and Mittal (1983),

Suppose that the patient data include the following: (a) hal-
lothane was administered at cholecystectomy, (b) bilirubin
12.2 three days after surgery, and (¢} patient had pruritus a
weelk later. And suppose that the cholestasis diagnostic spe-
cialist wants to evaluate the following (refinement) rule; If
jaundice onset within a week after surgery and pruritus
developed after jaundice, then consider post-operative
cholestasis caused by anaesthetics.

The MDX specialists may invoke PATREC when evaluat-
ing rule premises, In the above example PATREC's reasoning
is outlined as:

Data abstractions

1. Cholecystectomy is a type of surgery (generalisation)
2. Bilirubin 12.2 means bilirubin elevated {(qualitative
abstraction)

3. Bilirubin elevated implies jaundice present (data de-
pendency)

Temporal reasoning

4, 3 days is less than a week and jaundice appeared the
same time as bilirubin

5. Pruritus developed after jaundice (a week after the
time at which bilirubin was elevated).

From the above example we see that PATREC possesses a
rich knowledge on medical concepts that enables it to gener-
alise or restrict a finding (through the conceptual taxonomy),
derive dependencies on it, and franslate quantitative values
into gualitative ones (definitional links). The explication of
definitional, implicational and generalisation links is necess-
ary for generating suitable abstractions over the patient data.

Eaxplicitness of reasoning knowledge

MDX is a diagnostic system,; it does not make any treatment
recommendations, The objective of MDX is to identify the
primitive diagnostic concepts (ferminal nodes in the diagnos-
¢ taxonomy) which are present in the patient, The diagnos-
tic strategy is one of Establish and Refine, although this
strategy has not been abstracted in the system as such (see
below).

During a consultation control is initially passed to the top-
most specialist, internist say. Other specialists are activated
by a predecessor specialist through message passing. Mess-
ages include ‘establish yourself”, ‘establish yourself and then
refine’, etc. A specialist operates on the message from its
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predecessor and returns the results of its operations to the cal-
ling specialist. If, for exampie, it fails to establish itself, it in-
dicates so. This message passing is governed by rules that
correspond to practices adopted by the human specialists
{Chandrasekaran et al. 1979). For instance, no lateral calls are
allowed; the calls are usually from a specialist to a subspecial-
ist and vice versa.

Inordertoexecute arequest from another specialist, the sub-
specialist concerned activates the appropriate procedures at-
tached to it. This is why the reasoning is said to be distributed,
there is no centralised control and noe explicit statement of the
strategies used in general (abstract) terms. The trace of mess-
ages between the various specialists explicates the reasoning
chain that took place in a particular consultation. How under-
standable this trace of messages is would depend on how ob-
vious the justifications forthe various exchanged messages are.
These justifications are embedded in the precedures attached to
the specialists. Thus for a deeper understanding we need 1o ap-
preciate the logic of these procedures. The explicitness of
MDX’s reasoning knowledge, therefore, by and large depends
on how explicit the specialist procedures are. The general do-
main strategies and their justifications are not given explicitly.

Explicitness of case picture

The case picture lists all the activated hypotheses/conclusions
(diagnostic concepis) with their associated evidence, both
positive and negative. Although not evident from the litera-
ture, we would guess that the trace of the specialist activations
and the results of their operations are also registered in the
case picture. The patient record (including historical informa-
tion}, on secondary storage, is managed by PATREC. Since
all information on the patient is available at any time during
a consultation, for all purposes the patient record is a com-
ponent of the case picture.

2.3.2 Human-computer interaction
Dialogue structure

The user can volunteer information initially and the sub-
sequent order of information requests depends on the order of
specialist activations. A question either aims to establish
some diagnostic concept or to refine it. In this respect the re-
firement suggestions are very critical. If they form accurate
focusing heuristics, backtracking would be minimal and thus
the questions raised would be relevant. The presence of the
diagnostic taxonomy ensures (in a natural way) that general
concepts are established prior to their specialisations and that
the pursued hypotheses should be as specific as the data imply
(since a specialist can invoke a subspecialist many levels
down in the diagnostic taxonomy).

As seen above, the PATREC system plays a crucial role in
managing the patient information and reasoning intelligently
with it; thus this auxiliary system contributes much towards
achieving a natural dialogue structure,

Explanation structure

MDX dynamically generates and displays a trace of its activi-
ties, i.e., the sequence of activated specialists and the opera-
tions they need to perform. Any conclusion reached is dis-
played with the evidence that led to it. Such a trace is very
useful indeed and probably sufficient for some users. This ex-
planation is entirely machine-initiated (the user cannot ask
for any other explanations) and it is at a rather gross level. For
example, it may not be obvious from the displayed message
why a particular specialist is invoked (see above). This just-
fication is implicit in a procedure attached to the invoking
specialist. In theory, MDX could provide ‘deeper’ explana-
tions by displaying these procedures; the quality of these ex-
planations would therefore depend on the understandabitity
of these precedures. The justifications of information acqui-
sition requests are in terms of such procedures as well.

2.4 INTERNIST-I

INTERNIST- is a diagnostic system for internal medicine
(Miller et al. 1982). It is the largest Al in medicine program;
its knowledge base covers 80% of internal medicine, The
INTERNISTH framework is depicted in Figure 5.

2.4.1 Model of expertise
Explicitness of domain factual knowledge

in INTERNIST-I there are essentially two domain concepts:
disorders and manifestations. Disorders constitute the hy-
pothesised entities while the concept of a manifestation is
used ambiguously to denote findings as well as diseases re-
lated to some disease process (e.g., through causality).
Manifestations are related to disorders via evokes associ-
ations. Evokes associations are multi-valued where the
specified values denote the strengths to which the manifesta-
tions suggest the particular disorders. The inverse relation-
ship 1o evokes is also explicily represented; disorders are as-
sociated with their manifestations through a manifest rela-
tionship. Again, manifest associations are multi-valued where
the values denote how strongly the presence of the disorder
implies the presence of the associated manifestation. Thus
evocative associations represent sufficiency measures and
manifest associations embody necessity measures (how
frequently a disorder exhibits the given manifestation), Dis-
orders are related into a taxonomic structure where the
manifestations of a disorder class are those shared by its spe-
cialisations. The INTERNIST-I taxonomy plays a role in the
diagnostic process (but not as active as the MDX taxonomy
of diagnostic specialists). The disorder taxononiy enables the
explication of a special kind of relationship, the constrictor
relationship; this is a strong association between a set of (usu-
ally easily observable) findings and a class of disorders, e.g.,
jaundice strongly suggests a liver problem; hence the obser-



vation of jaundice would constrict the investigation on liver
diseases.

Finally, manifestations are associated with importance
measures that indicate how important it is that the final diag-
nosis accounts for their presence in a patient.

Explicitness of reasoning knowledge

The objective behind INTERNIST-I was to build a system
that modeiled the reasening of internists. The first version of
INTERNIST-1 was called DIALOG, an acronym for diagnos-
tic logic.

In INTERNIST-1 the reasoning knowledge is separated
and abstracted from the factual knowledge in terms of Lisp
procedures (cf, CASNET). There are procedures that gener-
ate hypotheses, and procedures embodying various informa-
tion acquisition strategies (rule-out, pursue, etc.). Thus, un-
like MDX where the reasoning knowledge is made specific

evokes
DA
M1
manifests
D11 D12 D13
M 2 > D1.3.1
manifestation profile disorder profile
+ differential diagno- * specialisations
sis list * manifestations
* importance — findings
measure — complementary
* constrictor for disorders

diagnostic picture:

« current problem to be resolved

+ concludes hypotheses (& manifestations accounted by
them)

 unexplained important manifestations

Figure 5. INTERNIST-I framework
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and distributed among the specialists concerned, the INTER-
NIST-] reasoning is centralised. However, this reasoning is
essentially embedded in the Lisp procedures that implement
it,

Explicitness of case picture

A case picture holds: the concluded hypotheses, each being
associated with the manifestation accounted by it; the active
Iiypotheses; and the unexplained manifestations. The picture
is completed when every important manifestation is covered
by some concluded hypothesis.

Althoughsome of the manifestassociationsinfactrepresent
causality associations between disorders, such causality rela-
tionships play a very secondary role in a diagnostic process in
comparison with the CASNET model. INTERNIST-I does ac-
cept the presence of multi-disease iliness but unlike CASNET
it does not generate complex hypotheses. Instead it deals with
simple disorder hypotheses, promoting the consideration of ac-
tive hypotheses which are somehow causally related to con-
claded hypotheses. The complete complex explanation is
therefore only apparent at the end of the consultation and not at
intermediate stages (sequentialrather than parallel reasoning).

2.4.2 Human-computer interaction
Dialogue structure

The dialogue is mixed-initiative; the user volunteers informa-
tion initially as well as at subsequent stages when the system
asks questions.

The system asks questions when it is pursuing a hypothe-
sis, when it is trying to rule out some hypotheses, or when it
attempts to differentiate between sets of hypotheses. These
strategies emulate heuristics employed by human diagnosti-
cians. The set of hiypotheses to be resolved (current problem)
are determined through a scoring heuristics and a partitioning
heuristics. As soon as a new item of information is obtained,
active hypotheses are rescored and repartitioned. This may
lead to rapid changes in focus with a corresponding question
sequence that diverges from that of human diagnosticians.
This weakness of the INTERNIST-I system is not necessarily
a consequence of the reasoning knowledge being implicit but
rather a consequence of an inaccurate integration of the rele-
vant heuristics. However, had the reascning knowledge been
more explicit and thus more understandable, the potential for
its extending would have been enhanced.

The disorder taxonomy and the constrictor associations
play an important role in reducing the number of unnecessary
questions by focusing the diagnostic process at the initial
stages; exhaustive searching in a space of the size of INTER-
NIST-F's is certainly not possible.

It should also be noted that INTERNIST-1’s sequential rea-
soning in the case of multi-disease problems is bound to
generate a dialogue structure that does not resemble that of
physicians. The problem here is essentially the inappropriate
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explication and reasoning about the causality relationship
(this drawback was addressed by the successor system
CADUCEUS which combines a taxonomy of diseases with a
causal network of pathological/disease states; by and large,
though, CADUCEUS remains a paper system).

Explanarion structure

INTERNIST-T displays a trace of its activities but no user-
initiated explanations are possible. Through this irace the user
knows which are the current conclusions, which manifesta-
tions have so far been explained, which are the active hy-
potheses and what strategy is used to acquire additional infor-
mation (for resolving the current problem). The reasons for
selecting the particular strategies are not disclosed and
neither are the beliefs in the hypotheses explained. The wrace
is useful but insufficient since much of the system reasoning
is hidden. Given the procedural representation of the system
reasoning knowledge it would not be possible to provide
more adequate explanations.

2.5 ABEL

The designers of ABEL aimed to build a manager for patients
suffering from electrolyte and acid-base disturbances. From
the available literature it appears that only the diagnostic
aspect of ABEL has been implemented (Patil 1981} and hence
this is what we discuss below. This model is given in Figure
6.

2.5.1 Model of expertise
Explicitness of domain factual knowledge

In ABEL the notion of causality is exploited in several ways:
to organise the patient facts and disease hypotheses, to deal
with the effects of more than one disease present in a patient,
and to provide the basis for explanations. The causal relation-
ship is given a rather novel interpretation, as a multivariate re-
lation between various aspects of the cause and the effect,
taking into account the context and the assumptions under
which the causal link is being instanriated (see Figure 6 a).
This interpretation is richer than CASNET’s interpretation as
the likelthood of observing the effect given the realization of
the cause. In ABEL causal links are considered to be objects
in their own rights giving the system the capability of hy-
pothesising the presence or absence of a causal link between
two realized nodes. Another important advantage of thig is
that the separate effects of multiple causes can be dynami-
cally combined into one effect.

ABEL’s knowledge-base consists of a causal network of
nodes representing the demain of acid-base and electrolyte
disturbances at the pathophysiological level. Through the
mechanism of focus links and focus nodes, the system can dy-
namically generate abstractions of portions of this network at

the clinical (phenomenoiogical) level via an intermediate
level. The “causal’ links at the clinical level span a number of
causal pathways at the pathophysiological level,

The ABEL model, therefore, combines detailed patho-
physiological knowledge with abstract ¢linical knowledge, It
seems that competent physicians are able to reason at muli-
pie levels of abstraction and to shift from one level of descrip-
tion to a more detailed or less abstract description level. The
pathophysiological knowledge is for a more accurate attribu-
tion of findings {thus for the proper understanding of a diffi-
cult case) and the clinical knowledge is for focusing, by yield-
ing a better exploration (global view) of the search space. The
ability to dynamically generate abstractions of the search
space is unique in ABEL amongst medicai expert systems.
Probably it should be noted that ABEL's application domain
is considerably narrower than the majority of medical expert
systems. {CADUCEUS, INTERNIST-I's successor, at-
tempted to do something similar for internal medicine; as al-
ready pointed out, CADUCEUS is a paper system, however,)

Explicitness of reasoning knowledge

From a static perspective, the ABEL reasoning knowledge is
embedded in Lisp procedures. Dynamically, however, ABEL
expiicates the reasoning involved in informartion acquisition
in terms of a tree structure, the information acquisition pian.
ABEL uses a set of information acquisition strategies thar dis-
criminate between a set of alternatives (similar to INTER-
NIST-I’s strategies). The information acquisition plan is
generated by repeatedly applying instances of the informa- -
tion acquisition strategies (pursue, explore, rule-out, dis-
criminate, group-and-differentiate) to simpier and simpler
subproblems of the goal problem which is 1o differentiate the
causal hypotheses (see below). The non-terminal nodes of
this tree specify instantiations of information acquisition
strategies and the terminal nodes specify questions. Thus, the
information acquisition plan explicates the rationale behind
each question.

Explicitness of case picture

Like CASNET, ABEL has simple hypotheses (in terms of
nodes and causal links) and complex hypotheses (in terms of
cawsal chains that completely and coherently explain the
patient problem). The case picture holds the various causal
hypotheses with their promise scores and the current plan for
information acquisition. However, it does not include the
justification for selecting a particular acquisition action at a
given point.

2.5.2 Human-computer interaction
Dialogue structure

The dialogue is mixed-initiative; the user volunteers informa-
tion and the system asks questions. The information acquisi-
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tion plan plays a critical role in the quality of the incurred
dialogue. Unlike INTERNIST-I which asks a single question
and then reevaluates its hypothesis space, ABEL has a plan
for information acquisition that aims to achieve a clinically
meaningful and focussed pursuit of diagnosis. The causality
relation and its interpretation are essential in the construction
of the plan. Thus, ‘causal’” knowiedge (at multiple levels of
abstraction) can yield a more meaningful dialogue structure.

Explanation Structure

ABEL registers its reasoning regarding information acquisi-
tion in a tree, where a non-terminal node represents a diag-
nostic problem (i.e.. a set of possibilities to be resolved) to-
gether with the differentiation strategy instantiated for this
problem. Branches from the node lead to the means for
achieving the corresponding strategy instantiation, Terminal
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nodes represent questions. Thus the rationale behind a ques-
ticn can be obtained by traversing the tree upwards from the
node representing the question. Although this tree registers
useful information such as ABEL’s expectations about the in-
formation being sought and how this information relates to
the hypotheses under consideration, it does not explicate the
reasons for selecting one information acquisition strategy
rather than another; of course, it may be argued that such rea-
sons are intuitively obvious, although there may be subtleties
which are not intuitively obvious.

In addition, ABEL can provide English translations of the
causal hypotheses at any given level of abstraction.
Throughout a consultation it provides a trace of its activities
{current hypotheses and their scores) and dynamically com-
municates the construction of the information acquisition
tree. Although the trace and the explanations cover for much
of ABEL’s reasoning, albeit at a gross level, some of the rea-
soning is completely hidden from the user. For example, the
user does not know what heuristics ABEL 1s using when scor-
ing hypotheses or how the complex hypotheses are derived.

The user is only told of the reasoning invoived in differenti-
ating between the competing hypotheses. Not being able to
communicate to the user the rationale behind critical deci-
sions is a serious omission.

2.6 NEOMYCIN

NEOMYCIN is a MYCIN derivative. The designers’ objec-
tive was for a system that provided an efficient basis for
teaching diagnostic reasoning and interpreting student be-
haviour (Clancey and Letsinger 1981). Figure 7 gives the
NEOMYCIN framework.

2.6.1 Model of expertise
NEOMYCIN attempts to cxplicate the types of knowledge

which are implicit in MYCIN, These types are referred to by
Clancey as structural, strategic and support knowledge.
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Domain factual Domain reasoning Case picture
knowiedge types knowledge
MYCIN inferential associations be-  implicit assertions organized in a
tween asserlions context iree
CASNET causat network (central embedded in  Fortran  simple hypotheses
sfructure allowing prognos-  routines (ceniralised) complex causal hypotheses
tic assessment)
observations
disease categories
treatment pians
MDX diagnostic taxonomy distributed among the diag-  activated diagnostic con-
knowiedge abou! estab- nostic concepts {special- cepls
lishing and refining diagnos-  ists) either declaratively (in-  messages exchanged be-
tic possibilities farential associations) or tween the diagnostic spe-
general knowledge on  procedurally cialists
medical concepts abstract strategies not ex-
plicit
INTERNIST-I manifestations embedded in Lips proce-  concluded hypotheses
disorders dures (centralised) unexplained manifestations
disorder classes current problem area
complementary  relations
between disorders
ABEL rich interpretation of causal embedded ({statically) in  complex, coherent hypothe-
link Lisp procedures, but ... ses
multileve! abstractions of  some justifications for infor-  current plan for information
causal knowledge mation acquisition ques-  acquisition
tions are dynamically expli-
cated in a tree-structured in-
formation-acquisition plan
abstract strategies implicit
NEOMYCIN eticlogical taxonomy reasoning strategies ab-  hypothesis differential
triggetrs stracted and made explicit  diagnostic plan (task instan-
observations (declarative representation)  tiations)
inferential associations
disease process knowledge
causal network (reasons
backwards in time})

Explicitness of domain factual knowledge

NEOMYCIN’s domain of expertise is primarily that of
MYCIN, although NEOMY CIN’s organisation of knowledge
facilitates its extension to cover for other disorders as well.
NEOMYCIN includes an etiological taxonomy (structural
knowledge). Etiologies provide the contexts for object rules:
MYCIN rules stripped of their contextual and screening
clauses (see Section 2.1.1). Object rules associate findings 1o
etiologies. These associations are not of a causal nature; the
causal chains justifying these associations are stored as
canned text for explanation purposes. Etiologies are also rep-
resented as disease processes in terms of symptom pro-
gressions in time. In addition, trigger rules associate findings

to those eticlogies, which the findings suggest strongly, Ab-
stractions and restrictions on findings and relevant world
facts in general are represented in terms of screening rules.

The NEOMYCIN model also includes a causal network
linking observations to etiologies via dysfunctional states.
Unlike CASNET and ABEL, the represented relationship is
caused-by.

The causal network is essentially for reasoning backwards
in time rather than for prognostic assessment. Thus, the NEO-
MY CIN model provides two routes to an etiology: via the etio-
logical taxonomy or via the causal network. The latter repre-
sents more detailed knowledge than the former. This situation
is similar to ABEL’s clinical and pathophysiological level, but
the triggering mechanism 1s absent in ABEL. The etiological
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taxonomy is for focusing and fora more global exploration of
the search space (trigger assoctations usually involveclasses of
eticlogies), and the causal network is for a more accurate at-
tribution of findings and the handling of difficult cases. This ar-
rangement obviously provides for higher fiexibility in problem
solving and by implication a higher level of performance.

Explicitness of reasoning knowledge

The representation of the reasoning knowledge is really what
makes NEOMYCIN stand apart from the other medical sys-
tems included in this study.

Thereasoning knowledgeis abstracted from the domain fac-
tual knowledge and is declaratively represented in terms of
tasks and meta-rules (the NEOMYCIN meta-rules are semarn-
tically different from the MY CIN meta-rules). A task is associ-
ated with a setof meta-rules whichmodel the means for achiev~
ing that task. Meta-rule consequents represent subtasks, and
their antecedents define conditions which must be true for
selecting the given subtasks. Thus, tasks are linked via the
meta-rules into a hierarchical structure; the root task is ‘make-
diagnosis’. Tasks and meta-rules are given in parameterised
form. Non-terminal tasks are essentially contro] tasks and ter-
minat tasks perform factual knowledge manipulations and ask
questions. Non-terminal tasks have termination conditions.

Table Il. Summary of human-computer interaction

Explicitness of case picture

The case picture holds the differential (activated hypotheses)
and the case findings. In addition, it contains the dynamicaily
generated diagnostic plan. This is a tree structure whose
nodes give the task instantiations for the particular case. A
nen-terminal task instantiation is achieved by repeatedly
selecting and applying meta-rules associated with the task
unti} its termination condition is satisfied. A meta-rule appli-
cation results in the instantiation of a subtask. Thus, the diag-
nostic plan registers completely the reasoning for the particu-
tar consultation.

2.6.2 Human-compurer interaction
Dialogue structure

NEOMYCIN has alleviated significant problems with
MYCIN’s dialogue structure. The user may volunteer infor-
mation initially as well as at subsequent stages, and this infor-
mation is used to constrain the hypothesis space. The etiologi-
cal taxonomy and the trigger associations play an important
role in this respect. Hence the NEOMYCIN taxonomy is an
active one. The screening rules alse play an important role in
ensuring a more intelligent dialogue structure.

Dialogue structure

Explanations structure

MYCIN entirely controlled by system

replay of rule activations

CASNET “mixed initiative”

focus directed by the “weights”
{values for the dysfunctional states}

can only explain its conciusions

focus determined by diagnostic spe-

trace of actions {system initiated)

trace of information acquisition actions

focus determined by scoring and par-

(system initiated)

methodical approach to information

rationale behind each information ac-
guisition question registered in the dy-
namically generated plan for informa-
tion acquisition; user-initiated explana-
tions do not cover for all the system
reasoning

MDX "mixed initiative”
cialists

INTERNIST-I ‘mixed initiative”
titioning heurlstics ...
rapid focus changes

ABEL “mixed initiative”
acquisition

NEOMYCIN "mixed initiative”

focus determined essentially by the
etiofogical taxonomy ({triggers)

the system reasoning can be ex-
plained in absiract terms (strategic
principles) and in concrete terms (rea-
soning tasks carrfed out); user-in-
itiated expianaticns cover for all the
system reasoning




Explanation structure

The diagnostic plan registers the reasoning that took place in
a consultation. For example the rationale behind a question is
obtained by ascending the diagnostic plan from the terminal
node representing the question. The tree branches represent
meta-rules; hence a chain of reasoning would be meaningfui
if the meta-rules are meaningful. Thus, what needs to be de-
cided is whether the logical bases of the NEOMYCIN meta-
rules are sufficienty explicit (why a given condition in the
context of some task instantiations would suggest undertaking
a particular task?). We would guess that representing strate-
gies in terms of (meta-) rules would suffer from the general
problem associated with a pure rule-based representation,
namety that exceptions are difficuit to encode (Dhar and
Pople 1987). Even if the quality of the meta-rules is lacking,
NEOMYCIN's explanations attempt to say why a particular
reasoning choice was made and not simply that a particular
choice has been made, Finally, strategies in NEOMYCIN are
expressed in general terns and their instantiations express the
application of strategies in specific contexts.

The models of expertise and the human-computer interac-
tion aspects of the analysed systems are summarised in Tables
T and H, respectively.

3. Discussion

First we assess the relative ‘deepness’ of the selected medical
expert systems and then we assess their relative qualities of
interaction.

3.1 Deepness ranking

For this discussion we are using a comparative definition of
deepness which is a generalisation and extension of the defi-
nition proposed by Kiein and Finin (1987):

A maodel M can be deeper than a4 moedel M’ from the fol-
lowing perspectives: (1) the factual knowledge in M is more
explicit than the factual knowledge in M™: {a) M represents
domain factual knowiledge types which are implicit in M, (b)
M gives a richer interpretation o a knowledge type than M’
does, and (c) M represents types or aspects of knowledge that
are absent in M’ even though it would be meaningful to
specify such knowledge types and aspects in the context of
M'. (2) The reasoning knowledge in M is more under-
standable than the reasoning knowledge in M: (a) M repre-
sents reasoning strategies which are implicit in M’, (b} M ab-
stracis its reasoning knowledge more than M’ does, and {c)
the semaniics of the reasoning knowledge in M are more ex-
plicit than the semantics of the reasoning knowledge in M’.
(3) The sclution progression in M, at intermediate stages, 1s
more understandable than the solution progression in M’

The above definition enables a comparison between sys-
terns from a number of deepness perspectives, e.g., from the
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perspective of reasoning knowledge or the perspective of fac-
tual knowledge. As such a system may be considered deeper
than another system from one perspective and vice versa from
a different perspective. This is also true for the Klein and
Finin definition, Deepness is a fuzzy concept and can cer-
tainly be viewed from many perspectives in the context of
knowledge-based systems like the medical expert systems
which exhibit complex organisational structures, Our defini-
tion enables a richer multi-dimensional comparison between
Systems.

In the following paragraphs we discuss our selected sys-
tems from these perspectives, concluding NEOMYCIN as the
deepest and MYCIN as the least deep system,

NEOMYCIN’s model of domain factual knowledge
encommpasses the facrual knowledge models of the other sys-
tems. This includes an etiological taxonomy, a causal net-
work, triggers, empirical associations between findings and
etiologies, disease process knowledge, findings and their in-
terdependencies. Although CASNET has a discase taxonomy
this is only used for linking causal pathways to treatment
plans and not for focusing the diagnostic process. INTER-
NIST-I's use of its disease taxonomy in the diagnostic process
is rather superficial. The same applies for INTERNIST-I's
causal associations between disorders. In addition, INTER-
NIST-I does not model finding dependencies, ABEL's causal-
ity interpretation is the richest among the selected systems,
ABEL’s causal network at the clinical level is analogous to a
disease taxonomy since both structures serve the same pur-
pose, namely focusing of the diagnostic process. ABEL’s
compiied links are analogous to the trigger links, MDX does
not model causality but its model of medical conrcepts as in-
corporated in the PATREC auxiliary system is significantly
richer than the data models in the other systems.

NEOMYCIN’s model of strategic and reasoning knowl-
edge 1s the most explicit among the selected systems. The
domain strategic principles are explicit in NEOMYCIN
(meta-rules). This is the abstract reasoning knowledge, In-
stantiations of the reasoning tasks make explicit the applica-
tion of these domain strategies in actual cases, This is the con-
crete reasoning knowledge. Statically, the semantics of NEQ-
MYCIN's reasoning are clearer than any of the other systems,
due to NEOMYCIN’s declarative representation of its rea-
soning knowledge in terms of tasks and meta-rules. NEOMY -
CIN has two knowledge-bases, one for the domain factual
knowiedge and one for the reasoning knowledge. Dynami-
caily, the NEOMYCIN diagnostic plan registers completely
the reasoning during a consultation. Again, this is unique in
NEOMYCIN. In the other systems the domain strategies are
either implicit in some procedural language (CASNET,
ABEL and INTERNIST-1}, are not represented at all (MDX),
or are implicit in mechanistic conirol structures (MYCIN).
ABEL represents its reasoning knowledge entirety in terms of
Lisp procedures. During a consultation the system generates
information acquisition plans ieading to meaningful
sequences of questions. Such plans explicate the justification
of an information seeking question in terms of the diagnostic
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hypotheses the question aims to resolve, but the plans do not
explicate the strategic principles invoked in selecting the par-
ticular questions. MDX's reasoning, in its semi-procedura}
semi-declarative representation, is more conspicucus than
CASNET’s and INTERNIST-T’s.

In NEOMYCIN, ABEL, CASNET, and MDX the pro-
gressions towards solutions, at intermediate stages of the con-
sultation, are understandable. This is not so for INTERNIST-
I. Oniy ABEL and CASNET have complex causal hypothe-
ses; NEOMYCIN uses the causal network to hypothesise in-
dividual dysfunctional states. The information registered in
MYCIN's context tree is understandable. However, the
derivation of the parameter values is not necessarily under-
standable,

Thus, on the basis of our definition, the deepness ranking
of the selected systems is: NEOMYCIN, ABEL, CASNET,
MDX , INTERNIST-I, MYCIN.

3.2 Human-computer interaction ranking

Apart from MYCIN, all the other systems in our study allow
the user to volunteer information. The dialogue structures of
CASNET, MDX, ABEL and NEOMYCIN are comparabie.
ABEL depicts the most organised approach to information
acquisition. The diagnostic taxenomies in MDX and NEO-
MYCIN with their respective triggering mechanisms con-
tribute significantly to the naturalness of the dialogue struc-
tures. The CASNET model explicates data dependencies. Its
mechanism of assigning weights to states together with the
notion of causal hypotheses provide the basis for 4 meaning-
ful dialogue. From an architectural point of view, however,
MDX through PATREC offers a novel approach to intelligent
data handling. INTERNIST-I's dialogue structure is superior
to MYCIN but inferjor to the other systems. INTERNIST-I
does not model data dependencies of disease processes {pro-
gressions of symptoms in time). Complex hypotheses are not
modelled properly and information acquisition is not well
planned.

Although the dialogue structures of the selected sys-
tems are by and large comparable, this is not so for their
respective explanation structures. The ranking from this
perspective (which in fact represents the overall human-
computer interaction ranking) is: NEOMYCIN, {ABEL,
MDX], CASNET, INTERNIST-I, MYCIN. NEOMYCIN
provides the richest explanations and in addition, these ex-
planations are user-initiated and can be offered at any
stage during a consultation. MYCIN satisfies the last two
criteria as well; however, its explanations simply repro-
duce rules which hide much of the domain knowledge,
NEOMYCIN can explain all its reasoning in both abstract
and concrete terms. ABEL and MDX have comparable ex-
planation structures. ABEL explanations are user-initiated
but do not cover for all the reasoning that took place in
a consultation while MDX expianations (trace of mess-
ages exchanged between specialists) are volunteered by

the system, and they cover completely the reasoning steps
that took place. Neither system is capable of explaining
its reasoning in abstract terms and they do not provide
any justifications for making a particular decision at a
given point in the consultation. CASNET cannot provide
any explanations during a consultation, but it can explain
its conclusions on user request at the end of a consul-
tation. These explanations do not reveal the actual system
reasoning. During a consultation INTERNIST-I displays its
conclusions, the current problem area, and the information
acquisition strategy used to resolve the current problem.
CASNET’s explanations, aithough only available at the
end of a consultation, are more useful than INTERNIST-
I's volunteered explanation (race.

In the literature of medical expert systems a deep sys-
tem tends to imply a causal system. If we were to rank
the selected systems from the perspective of how strongly
they model and reason with causality then this ranking
would have been; ABEL, CASNET, NEOMYCIN, INTER-
NISTI, {MDX, MYCIN]. Our deepness ranking correlates
closer to the human-computer interaction ranking than the
above causality ranking. In a medical expert system causal-
ity is probably a necessary but not a sufficient condition
for deepness. The concept of causality is not in fact ab-
solute; one can aiways define more detailed description of
some causal phenomenon. The fact that a model repre-
sents some kind of causality sheuld not automatically qual-
ify it as a deep model; a causal model may still be shal-
low in relative terms. For example, ABEL has three causal
networks: the topmost network (clinical level) certainly
does not embody detailed knowledge.

4, Conclusion

Expert systems in general and medical expert systems in par-
ticular have not quite reached the high levels of petformance
exhibited by the human experts; they can often deal very well
with instances of common problems but their performance
degrades drastically when dealing with a difficult case which
doesn’t quite fit the norms. Expert systems do not exhibit the
flexibility that characterizes human expertise and they are not
in a position to recognize when a problem does not belong to
their particular area of expertise. In addition, expert systems
cannot explain their reasoning and conclusions in meaningful
ways and often cannot converse intelligently with the user;
since expert systems are strongly interactive systems these
are serious deficiencies.

Realization of the above problems with the technology re-
sulted in the generation of the so-calied deep systems. Why
expert systems have not guite met their expectations is at-
tributed to their being shallow, Le., they lack the depth of
understanding that human experts have. A deep expert sys-
tem, or second generation expert system, should exhibit the
problem solving flexibility of a human expert and thus reach
truly high levels of performance.



Deepness has an appealing intuitive meaning but it is not
easy Lo assign clear semantics to it. This is evident from the
numerous definitions which have been put forward for a deep
expert system. In the context of medical expert systems the
most relevant definitions invoive causality and temporal rea-
soning. As we have seen above causality is a relative concept
and the ability to reason at different cansal levels is more use-
ful than the ability to have & single causal level {cf. CASNET
and ABEL); of course, the more abstract causal levels are just
like the empirical associations of shallow systems. Preoblem
solving flexibility derives from the ability to apply more than
one reasoning method and to switch from one method to
another as the particular problem case dictates {cf. NEOMY -
CIN which can either apply a top to bottom refinement
strategy using the triggers and etiological taxonoemy or a left
to right differential diagnostic strategy using the causal net-
work or a combination of these), Solving an easy problem
case by applying the method for difficult cases is neither effi-
cient nor effective. More importantly, this approach cannot
yield a human-compater interaction that is acceptable. A uni-
form reasoning method with its corresponding knowledge
structures is not sufficient. This 1s where current proposals for
deep expert systems go wrong, for example Davis’ proposal
that a deep system must reason from first principles, or rea-
son from stracture and function {Davis 1983). Such proposals

-aim for a single reasoning method which could solve any
probiem case. The consequence of this is that the chosen
method (and representation formalism) does not emulate
human expertise (Keravnou 1986}, thus defeating the originai
molivation for having a deep system. The coexistence of
different reasoning methods requires the integration of multi-
ple representations for the demain knowledge and the ability
to move from one representation to another. Instances of com-
mon problems can be dealt with in one way and instances of
difficult problems in another; only then is the knowiedge put
into effective use.

It is generally accepted that shallow systems are only
capable of matching problem instances against predeter-
mined patterns which subsequently lead to decisions. These
patterns have been compiled, presumably by the domain ex-
perts, through experience and deal with the majority of cases
but not every single case. If a particular problem fits such pre-
determined patterns then its solution can be derived very
quickly. Deep understanding of a domain on the other hand
implies knowledge of how the various domain entities inter-
act with each other so that a particular instantiation at a cer-
tain point of the problem space can be propagated through the
space. Such understanding enables the handling of cases that
do not fit the compiled patterns. However, trying to solve a
case that fits the compiled patterns in this way displays
naivety rather than expertise. A deep system must combine a
deep domain understanding with the experiential domain
knowledge. Chandrasekaran and Mittal {1982) bring out this
issue very succinctly, drawing from the domain of cholesta-
sis diagnosis. They suggest that an expert system must expli-
cate the conceptual structure of the domain knowledge; it is
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this structure, acquired through experience, which enables the
effective use of that knowledge,

Our definition of deepness relates closely to what Chan-
drasekaran and Mittal are proposing. We propose that a deep
expert system must properly articulale buman expertise, i.e.,
explicate the domain structure and the reasoning methods
used by the expert. This is in line with Chandrasekaran’s
generic task methodology (Chandrasekaran 1986). The
semantics of the generic reasoning methods must be explicit
in the system; these semantics explain if and when one
switches from one reasoning strategy to another, in context.
Expert problem solving is usually characterized with un-
known or imprecise information. Much of an expert’s exper-
tise (especiatly in diagnosis) is in acquiring new information
and reasoning in the absence, or acquisition, of previously un-
known information. An expert’s reasoning is therefore non-
monotonic; new strategic choices are made as the case
specific information grows, A deep expert system must be
capable of such non-monotonic reasoning at the strategic
level if it is so to exhibit the flexibility of a human expert and
also yield an acceptable human-computer Interaction.

A deep system must therefore deal effectively with both
common and uncommon instances of problem cases, i.e., ex-
hibit high problem solving flexibility, and must exhibit the
expectations of its users regarding meaningful explanations
and a comprehensible dialogue. The implication of these re-
quirements is that the system must provide a smooth amalga-
mation of all the reasening methods (generic tasks) and
knowledge structures used by the human experts. The ration-
ale for applying each of the generic tasks in an actual context
must be made explicit to allow the system to reason effec-
tively, in a non-monotonic fashion, at the strategic level. Thisg
essentially means that a deep system must be able 1o plan its
reasoning strategy for a specific case and modify the plan
when new case specific information violates the rationale
underlying the application of a particular plan step.

We conclude by giving our working absolute definition for
a deep system: a deep system is one that adequately explicates
the models of its domain factual and reasoning knowledge
and can reason non-monotonically at the strategic level,
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